CLIFF: clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts

نویسندگان

  • Eric P. Xing
  • Richard M. Karp
چکیده

We present CLIFF, an algorithm for clustering biological samples using gene expression microarray data. This clustering problem is difficult for several reasons, in particular the sparsity of the data, the high dimensionality of the feature (gene) space, and the fact that many features are irrelevant or redundant. Our algorithm iterates between two computational processes, feature filtering and clustering. Given a reference partition that approximates the correct clustering of the samples, our feature filtering procedure ranks the features according to their intrinsic discriminability, relevance to the reference partition, and irredundancy to other relevant features, and uses this ranking to select the features to be used in the following round of clustering. Our clustering algorithm, which is based on the concept of a normalized cut, clusters the samples into a new reference partition on the basis of the selected features. On a well-studied problem involving 72 leukemia samples and 7130 genes, we demonstrate that CLIFF outperforms standard clustering approaches that do not consider the feature selection issue, and produces a result that is very close to the original expert labeling of the sample set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

Application of modified balanced iterative reducing and clustering using hierarchies algorithm in parceling of brain performance using fMRI data

Introduction: Clustering of human brain is a very useful tool for diagnosis, treatment, and tracking of brain tumors. There are several methods in this category in order to do this. In this study, modified balanced iterative reducing and clustering using hierarchies (m-BIRCH) was introduced for brain activation clustering. This algorithm has an appropriate speed and good scalability in dealing ...

متن کامل

Developing a Filter-Wrapper Feature Selection Method and its Application in Dimension Reduction of Gen Expression

Nowadays, increasing the volume of data and the number of attributes in the dataset has reduced the accuracy of the learning algorithm and the computational complexity. A dimensionality reduction method is a feature selection method, which is done through filtering and wrapping. The wrapper methods are more accurate than filter ones but perform faster and have a less computational burden. With ...

متن کامل

A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts

High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...

متن کامل

Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach

Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 17 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2001